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(CLASSICAL) QUANTUM METROLOGY
ATOMIC SPECTROSCOPY: “PHASE” ESTIMATION
N atoms in a separable state
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* As the asymptotic N limit is equivalent to infinite number of repetitions the ultimate
precision is achievable in a single experimental shot despite the locality of QFI.




(IDEAL) QUANTUM METROLOGY

ATOMIC SPECTROSCOPY: “PHASE” ESTIMATION
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* Butin real experiments there always exists a source of uncorrelated decoherence
acting independently on each atom.

* Such decoherence could “decorrelate” the atoms, so that we may attain the ultimate
precision in the V — o limit with k = 1. But at the price of scaling ...




(REALISTIC) QUANTUM METROLOGY

ATOMIC SPECTROSCOPY: “PHASE” ESTIMATION
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(classical) shot noise scaling. over shot noise
* The bound then makes sense for a single shot (k=1). achievable with k=1 and spin-
* This occurs for decoherence of a generic type... squeezed states

The properties of the single use of a channel — A, — dictate the

asymptotic ultimate scaling of precision.



EFFICIENT TOOLS FOR DETERMINING cq (7

LOWER-BOUNDING

In order of their power and range of applicability:

o Classical Simulation (CS) method
o Stems from the p055|b|I|ty to 5|mulate locally quantum channels via classical probabilistic mixtures:
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o Optimal simulation corresponds to a simple, intuitive, geometric representation.
o Proves that almost all (including full rank) channels asymptotically scale classically.
o Allows to straightforwardly derive bounds (e.g. dephasing channel considered).

o Quantum Simulation (QS) method
o Generalizes the concept of local classical 5|mulat|on so that the parameter-dependent state does not
need to be diagonal: e |
— Ay — => o + O(6¢?) Aso[g]:q)[@@aqo}‘i'o(é%p )

o Proves asymptotic shot noise also for a W|der class of channels (e.g. optical interferometer with loss).

o Channel Extension (CE) method
o Algebraic method that applies to even wider class than quantum (and classically) simulable channels
(e.g. with noise due to spontaneous emission), and provides the tightest lower bounds on ¢q(7)
o Can be efficiently performed numerically by means of Semi-Definite Programming.
o Its numerical form can be improved and applied to the finite-N regime.
[JK, R. Demkowicz-Dobrzanski — arXiv 1303.7271(2013)]
o the finite-N CE method has been successfully applied to prove the possibility of 1/N>/6
(beating shot noise!) asymptotic scaling with noise being the transversal dephasing.
[R. Chaves, J. B. Brask, M. Markiewicz, JK, A. Acin — arXiv 1212.3286 (2013)]

(see the poster of Marcin Markiewicz)




CLASSICAL/QUANTUM SIMULATION OF A CHANNEL
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CLASSICAL/QUANTUM SIMULATION OF A CHANNEL

as a Markov chain:
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CLASSICAL/QUANTUM SIMULATION OF A CHANNEL

as a Markov chain:
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CLASSICAL/QUANTUM SIMULATION OF A CHANNEL
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THE "WORST” CLASSICAL SIMULATION

The set of quantum channels (CPTP maps) is convex
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Locality:
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It is enough to analize ,,local classical simulation”:
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Does not work for ¥ -extremal channels, e.g unitaries U,,.



GALLERY OF DECOHERENCE MODELS

Depolarization

Dephasing

Lossy interferometer

Spontaneous emission
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CONSEQUENCES ON REALISTIC SCENARIOS

“PHASE ESTIMATION” IN ATOMIC SPECTROSCPOPY WITH DEPHASING (5 = 0.9)
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[D. Leibfried et al, Science, 304 (2004)] [R.J. Sewell et al, PRL 109, 253605 (2012)]



CONCLUSIONS

Classically, for separable input states, the ultimate precision is bound to shot noise scaling
1/NN, which can be attained in a single experimental shot (k=1).

For lossless unitary evolution highly entangled input states (GHz, NOON) allow for ultimate
precision that follows the Heisenberg scaling 1/N, but attaining this limit may in principle
require infinite repetitions of the experiment (k—x).

The consequences of the dehorence acting independently on each particle:

«  The Heisenberg scaling is lost and only a constant factor quantum enhancement
over classical estimation strategies is allowed.

The optimal input states in the N—oo limit are of a simpler form (spin-squeezed atomic,
squeezed light states) and achieve the ultimate precision in a single shot (k=1).

*  However, finding the optimal form of those states is still an issue. Classical scaling
suggests local correlations > MPS states — (yesterday’s talk by Marcin Jarzyna).

We have formulated methods: Classical Simulation, Quantum Simulation and Channel
Extension; that may be applied to prove this behaviour and efficiently lower-bound the
constant factor of the quantum asymptotic enhancement for a generic channel.

The CE method may also be applied numerically for finite N as a semi-definite program.

The geometrical CS method proves the CQ/\/N for all full-rank channels and more.

 Yet, by using a cunning trick we managed to find a channel that, despite being full-
rank, achieves the ultimate 1/N°% asymptotic scaling — the transversal dephasing.
(see the poster of Marcin Markiewicz)



